If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y-2y^2=0
a = -2; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-2)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-2}=\frac{-8}{-4} =+2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-2}=\frac{0}{-4} =0 $
| 5(w-4)=7w-4 | | -100-9x=x+180 | | 8=5x+2/4 | | 9x+5x-3x-5=28 | | -84+6x=14x+124 | | -11x-32=-6x+73 | | 5+(x/3)=12 | | 5/4=x/180 | | 3x+7=10+4x | | -12x+14=-32 | | x2-30x+96=-10x | | 19=p/4+17 | | -5x-94=66-13x | | -31+15x=13x+11 | | 3/5y+9=6 | | -14=3v+5(v-6) | | 4v-1=17 | | 4v-1=@7 | | -112+15x=62+9x | | 0=x+3+1 | | 3=5(w+2)+2w | | 11x-20=9x+36 | | 2v^2+3v+29=(v-3)2 | | -98-10x=97+3x | | -1=2(u-3)-7u | | w÷2+5=9 | | 31/4+3x=13/4 | | 6+-x/2=4 | | 2y+6(y-2)=36 | | 18=4x+34 | | -4(4x-5)=39+3x | | 222-y=118 |